Identifying life history variation to inform recovery
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Presentation Objectives

e Review broad patterns of life history variation in
Chinook Salmon

e Framework for aligning emerging concepts, historic classifications of
salmon life histories, and terminology

e Potential underlying mechanisms
e |H variation across range of species

e Review article in revision: Bourret et al. Diversity of juvenile Chinook
salmon life history pathways Reviews in Fish Biology and Fisheries

e UWR Chinook Salmon, primarily outplant populations
e On-going methods development and validation

e Relationships between juvenile life history and adult
returns

e Estimating relative performance of juvenile life history pathways




Broader goals

e Estimate relative contribution of juvenile Chinook life
histories to adult returns

— Some will inevitably be more/less ‘successful’
— Fitness & Population growth implications

e Preserve ‘natural’ LH variation/manage for expression
— Buffer populations (Portfolio effect)
— Adaptation potential

e Understanding =
effective management
of Willamette Chinook

ype3: §
T ' W i highly
e 1: temperature & '_'_'+_' 39 adaptive
intolerant el R
o T T

oo e B




Singing to the choir...
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A historical (false) dichotomy...
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Chinook life history review

 The ‘historical’ concept (Mattson 1962)
— “Early life history of WIL R spring Chinook salmon”
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Schroeder et al. (2015): McKenzie and Santiam
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Classifications

o Explicitly or implicitly recognize variation in
timing of movement and the duration and
diversity of rearing habitats used by
individuals

 Need for explicit consideration of individual
effects vs. population-scale phenomena and a
framework that accommodates both




Life history pathway: individual phenotypes with
alternative life histories within populations

Juvenile Chinook Salmon life history diversity defined
by sequence and duration of stages

Key transitions include developmental and ecological
shifts

Variation in transitions create a potential continuum of
life history phenotypes within populations

Life history types emerge at the population scale when
there are discontinuities imposed by current
environmental constraints, past selection, etc.

Recommend a multi-trait and hierarchical approach



Bourret et al.
(in prep)

Chinook life history ‘pathways’
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Key traits and relationships

Developmental stage (inflexible template): egg, alevin, fry, parr,
smolt

Example Rearing Habitats (RH) (potential sequence(s) relative
inflexible):

Natal site (NS)
Downstream River (DSR)
Downstream Off Channel (DSOC)
Downstream Lake (DSL)
Downstream Reservoir (DSRES)
Downstream Estuary (DSE)
Timing of and Age at Transitions (highly variable):
Age at movement among rearing habitats
Location and age at Parr-Smolt transformation
Age at Ocean entry: months post-emergence, season, or age
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Example 1
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Approach applicable to individual pathways or populations

Intended as a framework to assist in standardization of
terminology within and across systems

Operational classifications will differ by region depending on
management questions, monitoring capacity and need for
explicit quantitative information on habitat use and timing




Phenotypic variation is the norm!
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Phenotypic variation is the norm!

Life history traits and habitat used by juveniles

State / Adultrun  Ocean entry  Ocean entry Juvenile
River basin  Province timing timing Age rearing habitat ~ Reference(s)
Sacramento  CA SP, FA, mix mix NS Kjelson et al. (1982)
late-FA, WI DSR Yoshiama et al. (1998)
DSOC Sommer et al. (2001)
DSE Beckman et al. (2007)
Miller et al. (2010)
Sixes OR FA - 1 NS Reimers (1971)
Range-wide NS
DSE
Salmon OR FA SP, SU, FA subyearling NS Bottom et al. (2005)
DSE Volk et al. (2010)
Willamette OR SP mix mix NS Mattson (1962)
DSRES Friesen et al. (2007)
DSR Keefer et al. (2011)
DSE Bourret et al. (2014)
Teel et al. (2014)
Schroeder et al. (in press)
Snake, ID FA mix mix NS Connor et al. (2002, 2005)
Clearwater, DSRES Hegg et al. (2013)
DSR
Salmon ID SP, SU SP, SU mix NS Bjornn (1971)
DSR Archord et al. (2011)

B tetali . . Copeland & Venditti (2009)
‘Bourret et al in revision Copeland et al. (2014)




Chinook Life History (mark-recapture)

 “Gold standard”
Snake River diversity

Ocean-type sub-yearling vs Reservoir-rearing yearling:
Lower Snake River

Stream-type Natal-Reach-Rearing vs Down-Stream-Rearing:

Marsh Creek, Middle Fork Salmon River
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FIGURE 3 —Examples of an ocean-type fall Chinook
salmon juvenile photographed in July 2004 (top panel)
and a reservoir-type juvenile photographed 1n April 2004
(bottom panel) at Lower Granite Dam.




Underlying mechanisms?

e Past paradigm: Phenotypic diversity ~ genetic diversity

 Emerging paradigm: Phenotypic plasticity and
conditional strategies are widespread

e Conditional strategies: physiological condition/trait
surpasses a genetically-based threshold and triggers one
of several alternative life history pathways

 Norm of reaction: range of phenotypes expressed by a
given genotype across environments (e.g., variation in
threshold values)

e Decision window: seasonal or ontological period when
an animal’s physiological condition allows a transition in
response to internal and environmental conditions
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Take-homes

Typological thinking can be useful if nature
cooperates—proceed with caution!

Phenotypic plasticity widespread with populations

Most populations, even classic interior ‘stream-type’
likely use(d) a variety of downstream habitats

Juvenile life history pathway diversity? Effects on
fitness and population production?

Multiple life histories contribute to UWR Chinook
returns at several scales

On-going work to

— identify major pathways (and discontinuities)

— refine monitoring tools

— evaluate impact on adult production



Composition varies through time and

space
e ODFW Scale database example: “Snapshot”

— Multiple years combined (~2000-2013)
— Total N = 6,195 (some ambiguous fish censored)
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100 + I
H N
(O
80 - — 1
X

s = Oth
S 60 - il
=
(]
(&)
o 40 - ] ]
o Validation of scale

20 - interpretations remains a key

uncertainty
0 u
< < < & o & & o
.\(b, .\(b. .\fb. /\/ /\/ Q) \ . .
& oS & & Y\O@Q’@& bé\ef‘ & Multi-agency comparison study
7S 2
& & N underway
v
|




Composition varies through time and

FProportion of Juvenile Life History
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Proportion

Composition in returning adults at
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Shifts in life history composition
between stages

Wild Chinook below Cougar (SF McKenzie)

Life history composition of returning adult Chinook salmon
by subbasin (2000-2013) from scales
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Romer et al 2014

Use shifts in composition between juveniles and adults
to estimate relative SAR for different types in the

absence of data on smolt production




SAR.yearling:SAR .subyearling
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SAR.yearling:SAR .subyearling
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Life history composition of returning adult Chinook salmon

Wild Chinook below Cougar (SF McKenzie) by subbasin (2000-2013) from scales
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~90% juveniles subyearlings Romer et al. 2014
~75% adult outplants smolted as yearlings ODFW Scale Database

=0.9/0.1* 75/25=9 * 3 =27

Analysis assumes subyearlings smolt as subyearlings and do not rear in mainstem
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Summary

e Shifts in life history composition can provide proxy
for marine performance in absence of smolt
production data
— reconstruction of baseline conditions
— monitoring effects of system modifications and climate
— evaluating potential benefit of actions affecting juvenile

life history composition

e Assumes rapid ocean entry (!see first half of talk...!)



Summary

Need for better understanding of downstream
freshwater and estuary habitats

Fitness and juvenile pathway changes through time and
space

Life history pathways affected by genes, environment
and condition

Plasticity and variation are the rule not the exception

Plasticity and life history variation likely affect fitness and
enhance the portfolio effect

Understanding underlying mechanisms always
important!
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